I am a dual Ph.D. candidate in Computer Science and Biosystems Engineering at Michigan State University. I am fortunate to be advised by Dr. Pouyan Nejadhashemi and Dr. Parisa Kordjamshidi.
My primary research is multidisciplinary and lies at the intersection of Natural Language Processing (NLP) and Process-based Modeling, involving the design of Neurosymbolic systems (Domain-specific LLMs & Crop Models) to solve challenging agricultural problems related to water management. A major part of my research work also revolves around the development of Decision Support Tools at the Decision Support & Informatics Lab.
Kpodo, J., & Nejadhashemi, A. P. (2025). Navigating challenges/opportunities in developing smart agricultural extension platforms: Multi-media data mining techniques. Artificial Intelligence in Agriculture. https://doi.org/10.1016/j.aiia.2025.04.001.
Razavi, M. A., Nejadhashemi, A. P., Majidi, B., Razavi, H. S., Kpodo, J., Eeswaran, R., Ciampitti, I., & Prasad, P. V. V. (2024). Enhancing crop yield prediction in Senegal using advanced machine learning techniques and synthetic data. Artificial Intelligence in Agriculture, 14, 99–114. https://doi.org/10.1016/j.aiia.2024.11.005
Banda, E., Rafiei, V., Kpodo, J., Nejadhashemi, A. P., Singh, G., Das, N. N., Kc, R., & Diallo, A. (2024). Millet yield estimations in Senegal: Unveiling the power of regional water stress analysis and advanced predictive modeling. Agricultural Water Management, 291. https://doi.org/10.1016/j.agwat.2023.108618.
Ferriby, H., Nejadhashemi, A.P., Hernandez-Suarez, J.S., Moore, N., Kpodo, J., Kropp, I., Eeswaran, R., Belton, B. and Haque, M.M., 2021. Harnessing Machine Learning Techniques for Mapping Aquaculture Waterbodies in Bangladesh. Remote Sensing, 13(23), p.4890.